Genetic Regulatory Networks that count to 3

4Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Sensing a graded input and differentiating between its different levels is at the core of many developmental decisions. Here, we want to examine how this can be realized for a simple system. We model gene regulatory circuits that reach distinct states when setting the underlying gene copy number to 1, 2 and 3. This distinction can be considered as counting the copy number. We explore different circuits that allow for counting and keeping memory of the count after resetting the copy number to 1. For this purpose, we sample different architectures and parameters, only considering circuits that contain repressive links, which we model by Michaelis-Menten terms. Interestingly, we find that counting to 3 does not require a hierarchy in Hill coefficients, in contrast to counting to 2, which is known from lambda phage. Furthermore, we find two main circuit architectures: one design also found in the vertebrate neural tube in a development governed by the sonic hedgehog morphogen and the more robust design of a repressilator supplemented with a weak repressilator acting in the opposite direction. © 2013 Elsevier Ltd.

Cite

CITATION STYLE

APA

Lehmann, M., & Sneppen, K. (2013). Genetic Regulatory Networks that count to 3. Journal of Theoretical Biology, 329, 15–19. https://doi.org/10.1016/j.jtbi.2013.03.023

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free