Heat-flux control and solid-state cooling by regulating chemical potential of photons in near-field electromagnetic heat transfer

129Citations
Citations of this article
73Readers
Mendeley users who have this article in their library.
Get full text

Abstract

We consider near-field heat transfer with nonzero chemical potential for photons, as can occur between two semiconductor bodies, held at different temperatures with at least one of the bodies under external bias. We show that the dependence of radiative heat flux on chemical potential enables electronic control of both the direction and magnitude of near-field heat transfer between the two bodies. Moreover such a configuration can operate as a solid-state cooling device whose efficiency can approach the Carnot limit in the ideal case. Significant cooling can also be achieved in the presence of inherent nonidealities including Auger recombination and parasitic phonon-polariton heat transfer.

Cite

CITATION STYLE

APA

Chen, K., Santhanam, P., Sandhu, S., Zhu, L., & Fan, S. (2015). Heat-flux control and solid-state cooling by regulating chemical potential of photons in near-field electromagnetic heat transfer. Physical Review B - Condensed Matter and Materials Physics, 91(13). https://doi.org/10.1103/PhysRevB.91.134301

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free