Sign up & Download
Sign in

The heterogeneous chemical kinetics of N2O5 on CaCO3 and other atmospheric mineral dust surrogates

by F Karagulian, C Santschi, M J Rossi
Atmos. Chem. Phys. FIELD Full Journal Title:Atmospheric Chemistry and Physics ()

Abstract

Uptake expts. of N2O5 on several mineral dust powder samples were carried out under continuous mol. flow conditions at 298 +- 2 K. At [N2O5]0 = (4.0 +- 1.0) * 1011 cm-3 we have found gamma ss values ranging from (3.5 +- 1.1) * 10-2 for CaCO3 to (0.20 +- 0.05) for Saharan Dust with gamma ss decreasing as [N2O5]0 increased. The uptake coeffs. reported in this work are to be regarded as upper limiting values owing to the fact that they are based on the geometric (projected) surface area of the mineral dust sample. We have obsd. delayed prodn. of HNO3 upon uptake of N2O5 for every investigated sample owing to hydrolysis of N2O5 with surface-adsorbed H2O. Arizona Test Dust and Kaolinite turned out to be the samples that generated the largest amt. of gas phase HNO3 with respect to N2O5 taken up. In contrast, the yield of HNO3 for Saharan Dust and CaCO3 is lower. On CaCO3 the disappearance of N2O5 was also accompanied by the formation of CO2. For CaCO3 sample masses ranging from 0.33 to 2.0 g, the yield of CO2 was approx. 42-50% with respect to the total no. of N2O5 mols. taken up. The reaction of N2O5 with mineral dust and the subsequent prodn. of gas phase HNO3 lead to a decrease in [NOx] which may have a significant effect on global ozone. [on SciFinder (R)]

Cite this document (BETA)

Readership Statistics

6 Readers on Mendeley
by Discipline
 
 
 
by Academic Status
 
50% Assistant Professor
 
33% Ph.D. Student
 
17% Associate Professor
by Country
 
17% United Kingdom
 
17% Saudi Arabia
 
17% United States

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Already have an account? Sign in