High-resolution air quality simulation over Europe with the chemistry transport model CHIMERE

64Citations
Citations of this article
60Readers
Mendeley users who have this article in their library.

Abstract

A modified version of CHIMERE 2009, including new methodologies in emissions modelling and an urban correction, is used to perform a simulation at high resolution (0.125° × 0.0625°) over Europe for the year 2009. The model reproduces the temporal variability of NO2, O3, PM10, PM2.5 better at rural (RB) than urban (UB) background stations, with yearly correlation values for the different pollutants ranging between 0.62 and 0.77 at RB sites and between 0.52 and 0.73 at UB sites. Also, the fractional biases (FBs) show that the model performs slightly better at RB sites than at UB sites for NO2 (RB Combining double low line g'33.9%, UB Combining double low line g'53.6%), O3 (RB Combining double low line 20.1%, UB Combining double low line 25.2%) and PM10 (RB Combining double low line g'5.50%, UB Combining double low line g'20.1%). The difficulties for the model in reproducing NO2 concentrations can be attributed to the general underestimation of NOx emissions as well as to the adopted horizontal resolution, which represents only partially the spatial gradient of the emissions over medium-size and small cities. The overestimation of O3 by the model is related to the NO2 underestimation and the overestimated O3 concentrations of the lateral boundary conditions. At UB sites, CHIMERE reproduces PM2.5 better than PM10. This is primarily the result of an underestimation of coarse particulate matter (PM) associated with uncertainties in secondary organic aerosol (SOA) chemistry and its precursor emissions (Po valley and Mediterranean basin), dust (south of Spain) and sea salt (western Europe). The results suggest that future work should focus on the development of national bottom-up emission inventories including a better account for semi-volatile organic compounds and their conversion to SOA, the improvement of the CHIMERE urban parameterization, the introduction into CHIMERE of the coarse nitrate chemistry and an advanced parameterization accounting for windblown dust emissions.

Cite

CITATION STYLE

APA

Terrenoire, E., Bessagnet, B., Rouïl, L., Tognet, F., Pirovano, G., Létinois, L., … Menut, L. (2015). High-resolution air quality simulation over Europe with the chemistry transport model CHIMERE. Geoscientific Model Development, 8(1), 21–42. https://doi.org/10.5194/gmd-8-21-2015

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free