Histone H4R3 methylation catalyzed by SKB1/PRMT5 is required for maintaining shoot apical meristem

N/ACitations
Citations of this article
52Readers
Mendeley users who have this article in their library.

Abstract

The shoot apical meristem (SAM) is the source of all of the above-ground tissues and organs in post-embryonic development in higher plants. Studies have proven that the expression of genes constituting the WUSCHEL (WUS)-CLAVATA (CLV) feedback loop is critical for the SAM maintenance. Several histone lysine acetylation and methylation markers have been proven to regulate the transcription level of WUS. However, little is known about how histone arginine methylation regulates the expression of WUS and other genes. Here, we report that H4R3 symmetric dimethylation (H4R3sme2) mediated by SKB1/PRMT5 represses the expression of CORYNE (CRN) to maintain normal SAM geometrics. SKB1 lesion results in small SAM size in Arabidopsis, as well as down-regulated expression of WUS and CLV3. Up-regulation of WUS expression enlarges SAM size in skb1 mutant plants. We find that SKB1 and H4R3sme2 associate with the chromatin of the CRN locus to down-regulate its transcription. Mutation of CRN rescues the expression of WUS and the small SAM size of skb1. Thus, SKB1 and SKB1-mediated H4R3sme2 are required for the maintenance of SAM in Arabidopsis seedlings. © 2013 Yue et al.

Cite

CITATION STYLE

APA

Yue, M., Li, Q., Zhang, Y., Zhao, Y., Zhang, Z., & Bao, S. (2013). Histone H4R3 methylation catalyzed by SKB1/PRMT5 is required for maintaining shoot apical meristem. PLoS ONE, 8(12). https://doi.org/10.1371/journal.pone.0083258

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free