Hydroelastic analysis of ice shelves under long wave excitation

21Citations
Citations of this article
20Readers
Mendeley users who have this article in their library.

Abstract

The transient hydroelastic response of an ice shelf under long wave excitation is analysed by means of the finite element method. The simple model, presented in this work, is used for the simulation of the generated kinematic and stress fields in an ice shelf, when the latter interacts with a tsunami wave. The ice shelf, being of large length compared to its thickness, is modelled as an elastic Euler-Bernoulli beam, constrained at the grounding line. The hydrodynamic field is represented by the linearised shallow water equations. The numerical solution is based on the development of a special hydroelastic finite element for the system of governing of equations. Motivated by the 2011 Sulzberger Ice Shelf (SIS) calving event and its correlation with the Honshu Tsunami, the SIS stable configuration is studied. The extreme values of the bending moment distribution in both space and time are examined. Finally, the location of these extrema is investigated for different values of ice shelf thickness and tsunami wave length.

Cite

CITATION STYLE

APA

Papathanasiou, T. K., Karperaki, A. E., Theotokoglou, E. E., & Belibassakis, K. A. (2015). Hydroelastic analysis of ice shelves under long wave excitation. Natural Hazards and Earth System Sciences, 15(8), 1851–1857. https://doi.org/10.5194/nhess-15-1851-2015

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free