Identification of flgZ as a flagellar gene encoding a PilZ domain protein that regulates swimming motility and biofilm formation in Pseudomonas

50Citations
Citations of this article
74Readers
Mendeley users who have this article in their library.

Abstract

Diguanylate cyclase and phosphodiesterase enzymatic activities control c-di-GMP levels modulating planktonic versus sessile lifestyle behavior in bacteria. The PilZ domain is described as a sensor of c-di-GMP intracellular levels and the proteins containing a PilZ domain represent the best studied class of c-di-GMP receptors forming part of the c-di-GMP signaling cascade. In P. fluorescens F113 we have found two diguanylate cyclases (WspR, SadC) and one phosphodiesterase (BifA) implicated in regulation of swimming motility and biofilm formation. Here we identify a flgZ gene located in a flagellar operon encoding a protein that contains a PilZ domain. Moreover, we show that FlgZ subcellular localization depends on the c-di-GMP intracellular levels. The overexpression analysis of flgZ in P. fluorescens F113 and P. putida KT2440 backgrounds reveal a participation of FlgZ in Pseudomonas swimming motility regulation. Besides, the epistasis of flgZ over wspR and bifA clearly shows that c-di-GMP intracellular levels produced by the enzymatic activity of the diguanylate cyclase WspR and the phosphodiesterase BifA regulates biofilm formation through FlgZ. © 2014 Martínez-Granero et al.

Cite

CITATION STYLE

APA

Martínez-Granero, F., Navazo, A., Barahona, E., Redondo-Nieto, M., De Heredia, E. G., Baena, I., … Martín, M. (2014). Identification of flgZ as a flagellar gene encoding a PilZ domain protein that regulates swimming motility and biofilm formation in Pseudomonas. PLoS ONE, 9(2). https://doi.org/10.1371/journal.pone.0087608

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free