Identification of main human urinary metabolites of the designer nitrobenzodiazepines clonazolam, meclonazepam, and nifoxipam by nano-liquid chromatography-high-resolution mass spectrometry for drug testing purposes

57Citations
Citations of this article
45Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Among the new psychoactive substances (NPS), so-called designer benzodiazepines have become of particular importance over the last 2 years, due to their increasing availability on the internet drug market. Therapeutically used nitrobenzodiazepines such as flunitrazepam are known to be extensively metabolized via N-dealkylation to active metabolites and via nitro reduction to the 7-amino compounds. The aim of the present work was to tentatively identify phase I and II metabolites of the latest members of this class appearing on the NPS market, clonazolam, meclonazepam, and nifoxipam, in human urine samples. Nano-liquid chromatography-high-resolution mass spectrometry was used to provide data about their detectability in urine. Data revealed that clonazolam and meclonazepam were extensively metabolized and mainly excreted as their amino and acetamino metabolites. Nifoxipam was also extensively metabolized, but instead mainly excreted as the acetamino metabolite and a glucuronic acid conjugate of the parent. Based on analysis of human urine samples collected in cases of acute intoxication within the Swedish STRIDA project, and samples submitted for routine drug testing, the most abundant metabolites and good targets for urine drug testing were 7-aminoclonazolam for clonazolam, 7-acetaminomeclonazepam for meclonazepam, and 7-acetaminonifoxipam for nifoxipam.

Cite

CITATION STYLE

APA

Meyer, M. R., Bergstrand, M. P., Helander, A., & Beck, O. (2016). Identification of main human urinary metabolites of the designer nitrobenzodiazepines clonazolam, meclonazepam, and nifoxipam by nano-liquid chromatography-high-resolution mass spectrometry for drug testing purposes. Analytical and Bioanalytical Chemistry, 408(13), 3571–3591. https://doi.org/10.1007/s00216-016-9439-6

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free