Improved retrieval of nitrogen dioxide (NO2) column densities by means of MKIV Brewer spectrophotometers

15Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

Abstract

A new algorithm to retrieve nitrogen dioxide (NO2) column densities using MKIV ("Mark IV") Brewer spectrophotometers is described. The method includes several improvements, such as a more recent spectroscopic data set, the reduction of measurement noise, interference by other atmospheric species and instrumental settings, and a better determination of the zenith sky air mass factor. The technique was tested during an ad hoc calibration campaign at the high-altitude site of Izaña (Tenerife, Spain) and the results of the direct sun and zenith sky geometries were compared to those obtained by two reference instruments from the Network for the Detection of Atmospheric Composition Change (NDACC): a Fourier Transform Infrared Radiometer (FTIR) and an advanced visible spectrograph (RASAS-II) based on the differential optical absorption spectrometry (DOAS) technique. To determine the extraterrestrial constant, an easily implementable extension of the standard Langley technique for very clean sites without tropospheric NO2 was developed which takes into account the daytime linear drift of stratospheric nitrogen dioxide due to photochemistry. The measurement uncertainty was thoroughly determined by using a Monte Carlo technique. Poisson noise and wavelength misalignments were found to be the most influential contributors to the overall uncertainty, and possible solutions are proposed for future improvements. The new algorithm is backward-compatible, thus allowing for the reprocessing of historical data sets.

Cite

CITATION STYLE

APA

Diémoz, H., Siani, A. M., Redondas, A., Savastiouk, V., Mcelroy, C. T., Navarro-Comas, M., & Hase, F. (2014). Improved retrieval of nitrogen dioxide (NO2) column densities by means of MKIV Brewer spectrophotometers. Atmospheric Measurement Techniques, 7(11), 4009–4022. https://doi.org/10.5194/amt-7-4009-2014

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free