Influence of biomass burning on CCN number and hygroscopicity during summertime in the eastern Mediterranean

  • Bougiatioti A
  • Bezantakos S
  • Stavroulas I
  • et al.
N/ACitations
Citations of this article
12Readers
Mendeley users who have this article in their library.
Get full text

Abstract

This study investigates the CCN activity and hygroscopic properties of particles influenced by biomass burning in the eastern Mediterranean. Air masses sampled were subject to a range of atmospheric processing (several hours up to 3 days). Values of the hygroscopicity parameter, κ, were derived from cloud condensation nuclei (CCN) measurements and a Hygroscopic Tandem Differential Mobility Analyzer (HTDMA). An Aerosol Chemical Speciation Monitor (ACSM) was also used to determine the chemical composition and mass concentration of non-refractory components of the submicron aerosol fraction. During fire events, the increased organic content (and lower inorganic fraction) of the aerosol decreases the hygroscopicity parameter, κ, for all particle sizes. The reason, however, for this decrease was not the same for all size modes; smaller particle sizes appeared to be richer in less hygroscopic, less CCN-active components due to coagulation processes while larger particles become less hygroscopic during the biomass burning events due to condensation of less hygroscopic gaseous compounds. In addition, smaller particles exhibited considerable chemical dispersion (where hygroscopicity varied up to 100 % for particles of same size); larger particles, however, exhibited considerably less dispersion owing to the effects of aging and retained high levels of CCN activity. These conclusions are further supported by the observed mixing state determined by the HTDMA measurements. ACSM measurements indicate that the bulk composition reflects the hygroscopicity and chemical nature of the largest particles and a large fraction of the CCN concentrations sampled. Based on Positive Matrix Factorization (PMF) analysis of the organic ACSM spectra, CCN concentrations follow a similar trend with the BBOA component, with enhancements of CCN in biomass burning plumes ranging between 65 and 150 %, for supersaturations ranging between 0.2 and 0.7 %. Using multilinear regression, we determine the hygroscopicity of the prime organic aerosol components (BBOA, OOA-BB and OOA); it is found that the total organic hygroscopicity is very close to the inferred hygroscopicity of the oxygenated organic aerosol components. Finally, the transformation of freshly-emitted biomass burning (BBOA) to more oxidized organic aerosol (OOA-BB) can result in a two-fold increase of the inferred organic hygroscopicity. Almost 10 % of the total aerosol hygroscopicity is related to the two biomass burning components (BBOA and OOA-BB), which in turn contribute almost 35 % to the fine-particle organic water of the aerosol. This is important as organic water can contribute to the atmospheric chemistry and the direct radiative forcing.

Cite

CITATION STYLE

APA

Bougiatioti, a., Bezantakos, S., Stavroulas, I., Kalivitis, N., Kokkalis, P., Biskos, G., … Nenes, A. (2015). Influence of biomass burning on CCN number and hygroscopicity during summertime in the eastern Mediterranean. Atmospheric Chemistry and Physics Discussions, 15(15), 21539–21582. https://doi.org/10.5194/acpd-15-21539-2015

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free