Inhibition of isoprene biosynthesis pathway enzymes by phosphonates, bisphosphonates, and diphosphates

51Citations
Citations of this article
44Readers
Mendeley users who have this article in their library.
Get full text

Abstract

We have investigated the docking of a variety of inhibitors and substrates to the isoprene biosynthesis pathway enzymes farnesyl diphosphate synthase (FPPS), isopentenyl diphosphate/ dimethylallyl diphosphate isomerase (IPPI) and deoxyxylulose-5-phosphate reductoisomerase (DXR) using the Lamarckian genetic alogorithm program, AutoDock. The docked ligand structures are predicted with a ∼0.8 Å rms deviation from the structures determined crystallographically. The errors found are a function of the number of atoms in the ligand (R = 0.91, p < 0.0001) and, to a lesser extent, on the resolution of the crystallographic structure (R = 0.70, p < 0.008). The structures of three isoprenoid diphosphates docked to the FPPS enzyme reveal strong electrostatic interactions with Mg2+, lysine and arginine active site residues. Similar results are obtained with the docking of four IPPI inhibitors to the IPPI enzyme. The DXR substrate, deoxyxylulose-5-phosphate, is found to dock to Mn2+-NADPH-DXR in an almost identical manner as does the inhibitor fosimdomycin to Mn2+-DXR (ligand heavy atom rms deviation = 0.90 Å) and is poised to interact with NADPH. Bisphosphonate inhibitors are found to bind to the allylic binding sites in both eukaryotic and prokaryotic FPPSs, in good accord with recent crystallographic results (a 0.4 Å rms deviation from the X-ray structure with the E. coli enzyme). Overall, these results show for the first time that the geometries of a broad variety of phosphorus-containing inhibitors and substrates of isoprene biosynthesis pathway enzymes can be well predicted by using computational methods, which can be expected to facilitate the design of novel inhibitors of these enzymes.

Cite

CITATION STYLE

APA

Cheng, F., & Oldfield, E. (2004). Inhibition of isoprene biosynthesis pathway enzymes by phosphonates, bisphosphonates, and diphosphates. Journal of Medicinal Chemistry, 47(21), 5149–5158. https://doi.org/10.1021/jm040036s

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free