Investigation of indazole unbinding pathways in CYP2E1 by molecular dynamics simulations

42Citations
Citations of this article
28Readers
Mendeley users who have this article in their library.

Abstract

Human microsomal cytochrome P450 2E1 (CYP2E1) can oxidize not only low molecular weight xenobiotic compounds such as ethanol, but also many endogenous fatty acids. The crystal structure of CYP2E1 in complex with indazole reveals that the active site is deeply buried into the protein center. Thus, the unbinding pathways and associated unbinding mechanisms remain elusive. In this study, random acceleration molecular dynamics simulations combined with steered molecular dynamics and potential of mean force calculations were performed to identify the possible unbinding pathways in CYP2E1. The results show that channel 2c and 2a are most likely the unbinding channels of CYP2E1. The former channel is located between helices G and I and the B-C loop, and the latter resides between the region formed by the F-G loop, the B-C loop and the β1 sheet. Phe298 and Phe478 act as the gate keeper during indazole unbinding along channel 2c and 2a, respectively. Previous site-directed mutagenesis experiments also supported these findings. © 2012 Shen et al.

Cite

CITATION STYLE

APA

Shen, Z., Cheng, F., Xu, Y., Fu, J., Xiao, W., Shen, J., … Tang, Y. (2012). Investigation of indazole unbinding pathways in CYP2E1 by molecular dynamics simulations. PLoS ONE, 7(3). https://doi.org/10.1371/journal.pone.0033500

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free