Laboratory study on heterogeneous decomposition of methyl chloroform on various standard aluminosilica clay minerals as a potential tropospheric sink

5Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Methyl chloroform (1,1,1-trichloroethane, CH3CCl3) was found to decompose heterogeneously on seven types of standard clay minerals (23 materials) in dry air at 313K in the laboratory. All reactions proceeded through the elimination of HCl; CH3CCl3 was converted quantitatively to CH2=CCl2. The activities of the clay minerals were compared via their pseudo-first-order reaction rate constants (k1). A positive correlation was observed between the k1 value and the specific surface area (S) of clay minerals, where the S value was determined by means of the general Brunauer-Emmett-Teller (BET) equation. The k1 value was anti-correlated with the value of n, which was a parameter of the general BET equation and related to the average pore size of the clay minerals, and correlated with the water content that can be removed easily from the clay minerals. The reaction required no special pretreatment of clay minerals, such as heating at high temperatures; hence, the reaction can be expected to occur in the environment. Photoillumination by wavelengths present in the troposphere did not accelerate the decomposition of CH 3CCl3, but it induced heterogeneous photodecomposition of CH2=CCl2. The temperature dependence of k1, the adsorption equilibrium coefficient of CH3CCl3 and CH 2=CCl2, and the surface reaction rate constant of CH 3CCl3 were determined for an illite sample. The k 1 value increased with increasing temperature. The amount of CH 3CCl3 adsorbed on the illite during the reaction was proportional to the partial pressure of CH3CCl3. The reaction was sensitive to relative humidity and the k1 value decreased with increasing relative humidity. However, the reaction was found to proceed at a relative humidity of 22% at 313 K, although the k1 value was about one-twentieth of the value in non-humidified air. The conditions required for the reaction may be present in major desert regions of the world. A simple estimation indicates that the possible heterogeneous decomposition of CH 3CCl3 on the ground surface in arid re- gions is worth taking into consideration when inferring the tropospheric lifetime of CH 3CCl3 and global OH concentration from the global budget concentration of CH3CCl3. © 2003 European Geosciences Union.

Cite

CITATION STYLE

APA

Kutsuna, S., Chen, L., Ohno, K., Negishi, N., Takeuchi, K., Ibusuki, T., … Sekiya, A. (2003). Laboratory study on heterogeneous decomposition of methyl chloroform on various standard aluminosilica clay minerals as a potential tropospheric sink. Atmospheric Chemistry and Physics, 3(4), 1063–1082. https://doi.org/10.5194/acp-3-1063-2003

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free