Mean shift: A robust approach toward feature space analysis

10.0kCitations
Citations of this article
3.8kReaders
Mendeley users who have this article in their library.
Get full text

Abstract

A general nonparametric technique is proposed for the analysis of a complex multimodal feature space and to delineate arbitrarily shaped clusters in it. The basic computational module of the technique is an old pattern recognition procedure, the mean shift. We prove for discrete data the convergence of a recursive mean shift procedure to the nearest stationary point of the underlying density function and, thus, its utility in detecting the modes of the density. The relation of the mean shift procedure to the Nadaraya-Watson estimator from kernel regression and the robust M-estimators of location is also established. Algorithms for two low-level vision tasks, discontinuity preserving smoothing and image segmentation, are described as applications. In these algorithms, the only user set parameter is the resolution of the analysis and either gray level or color images are accepted as input. Extensive experimental results illustrate their excellent performance.

Cite

CITATION STYLE

APA

Comaniciu, D., & Meer, P. (2002). Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5), 603–619. https://doi.org/10.1109/34.1000236

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free