Membrane permeabilizing amphiphilic peptide delivers recombinant transcription factor and CRISPR-Cas9/Cpf1 ribonucleoproteins in hard-to-modify cells

49Citations
Citations of this article
130Readers
Mendeley users who have this article in their library.

Abstract

Delivery of recombinant proteins to therapeutic cells is limited by a lack of efficient methods. This hinders the use of transcription factors or Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) ribonucleoproteins to develop cell therapies. Here, we report a soluble peptide designed for the direct delivery of proteins to mammalian cells including human stem cells, hard-to-modify primary natural killer (NK) cells, and cancer cell models. This peptide is composed of a 6x histidine-rich domain fused to the endosomolytic peptide CM18 and the cell penetrating peptide PTD4. A less than two-minute co-incubation of 6His- CM18-PTD4 peptide with spCas9 and/or asCpf1 CRISPR ribonucleoproteins achieves robust gene editing. The same procedure, co-incubating with the transcription factor HoxB4, achieves transcriptional regulation. The broad applicability and flexibility of this DNA- and chemical-free method across different cell types, particularly hard-to-transfect cells, opens the way for a direct use of proteins for biomedical research and cell therapy manufacturing.

Cite

CITATION STYLE

APA

Del’Guidice, T., Lepetit-Stoffaes, J. P., Bordeleau, L. J., Roberge, J., Théberge, V., Lauvaux, C., … Guay, D. (2018). Membrane permeabilizing amphiphilic peptide delivers recombinant transcription factor and CRISPR-Cas9/Cpf1 ribonucleoproteins in hard-to-modify cells. PLoS ONE, 13(4). https://doi.org/10.1371/journal.pone.0195558

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free