Microphysics and heterogeneous chemistry in aircraft plumes - High sensitivity on local meteorology and atmospheric composition

27Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.
Get full text

Abstract

An aircraft plume model has been developed on the basis of two coupled trajectory box models. Two boxes, one for plume and one for background conditions, are coupled by means of a mixing parameterization based on turbulence theory. The model considers comprehensive gas phase chemistry for the tropopause region including acetone, ethane and their oxidation products. Heterogeneous halogen, N2O5 and HOx chemistry on various types of background and aircraft-induced aerosols (liquid and ice) is considered, using state-of-the-art solubility dependent uptake coefficients for liquid phase reactions. The microphysical scheme allows for coagulation, gas-diffusive particle growth and evaporation, so that the particle development from 1 s after emission to several days can be simulated. Model results are shown, studying emissions into the upper troposphere as well as into the lowermost stratosphere for contrail and noncontrail conditions. We show the microphysical and chemical evolution of spreading plumes and use the concept of mean plume encounter time, tl, to define effective emission and perturbation indices (EEIs and EPIs) for the North Atlantic Flight Corridor (NAFC) showing EEI(NOy) and EPI(O3) for various background conditions, such as relative humidity, local time of emission, and seasonal variations. Our results show a high sensitivity of EEI and EPIs on the exact conditions under which emissions take place. The difference of EEIs with and without considering plume processes indicates that these processes cannot be neglected. European Geosciences Union © 2005 Author(s). This work is licensed under a Creative Commons License.

Cite

CITATION STYLE

APA

Meilinger, S. K., Kärcher, B., & Peter, T. (2005). Microphysics and heterogeneous chemistry in aircraft plumes - High sensitivity on local meteorology and atmospheric composition. Atmospheric Chemistry and Physics, 5(2), 533–545. https://doi.org/10.5194/acp-5-533-2005

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free