Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious-metal smelting at abandoned mine sites

109Citations
Citations of this article
87Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Slag collected from smelter sites associated with historic base-metal mines contains elevated concentrations of trace elements such as Cu, Zn and Pb. Weathering of slag piles, many of which were deposited along stream banks, potentially may release these trace elements into the environment. Slags were sampled from the Ely and Elizabeth mines in the Vermont copper belt, from the copper Basin mining district at Ducktown, Tennessee and from the Clayton silver mine in the Bayhorse mining district, Idaho, in the USA. Primary phases in the slags include: olivine-group minerals, glass, spinels, sulfide minerals and native metals for Vermont samples; glass, sulfide minerals and native metals for the Ducktown sample; and olivine-group minerals, clinopyroxenes, spinels, sulfide minerals, native metals and other unidentified metallic compounds for Clayton slag. Olivine-group minerals and pyroxenes are dominantly fayalitic and hedenbergitic in composition, respectively and contain up to 1.25 wt.% ZnO. Spinel minerals range between magnetite and hercynite in composition and contain Zn (up to 2.07 wt.% ZnO), Ti (up to 4.25 wt.% TiO2) and Cr (up to 1.39 wt.% Cr2O3). Cobalt, Ni, Cu, As, Ag, Sb and Pb occur in the glass phase, sulfides, metallic phases and unidentified metallic compounds. Bulk slag trace-element chemistry shows that the metals of the Vermont and Tennessee slags are dominated by Cu (1900-13,500 mg/kg) and Zn (2310-10,200 mg/kg), whereas the Clayton slag is dominated by Pb (63,000 mg/kg), Zn (19,700 mg/kg), Cu (7550 mg/kg), As (555 mg/kg), Sn (363 mg/kg) and Ag (200 mg/kg). Laboratory-based leach tests indicate metals can be released under simulated natural conditions. Leachates from most slags were found to contain elevated concentrations of Cu and Zn (up to 1800 and 470 μg/l, respectively), well in excess of the acute toxicity guidelines for aquatic life. For the Idaho slag, the concentration of Pb in the leachate (11,000 μg/l) is also in excess of the acute toxicity guideline. Geochemical modeling of the leachate chemistry suggests that leachates from the Vermont, Tennessee and Clayton slags are saturated with amorphous silica and Al hydroxide. Therefore, the dissolution of silicate and oxide phases, the oxidation of sulfide phases, as well as the precipitation of secondary phases may control the composition of leachate from slags. The presence of secondary minerals on slag deposits in the field is evidence that these materials are reactive. The petrographic data and results of leaching tests from this study indicate slag may be a source of potentially toxic metals at abandoned mine sites.

Cite

CITATION STYLE

APA

Piatak, N. M., Seal, R. R., & Hammarstrom, J. M. (2004). Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious-metal smelting at abandoned mine sites. In Applied Geochemistry (Vol. 19, pp. 1039–1064). https://doi.org/10.1016/j.apgeochem.2004.01.005

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free