Moderate Greenland ice sheet melt during the last interglacial constrained by present-day observations and paleo ice core reconstructions

  • Langebroek P
  • Nisancioglu K
ISSN: 1994-0440
N/ACitations
Citations of this article
16Readers
Mendeley users who have this article in their library.

Abstract

During the last interglacial period (LIG, ~ 130–115 ka before present, ka = 1000 yr) summer temperatures over Greenland were several degrees higher than today. It is likely that the Greenland ice sheet (GIS) was smaller than today, contributing to the reconstructed sea-level highstand of the LIG. However, the range of simulated GIS melt is large, and the location of the melt is uncertain. Here, we use temperature and precipitation patterns simulated by the Norwegian Earth System Model (NorESM) to investigate the volume, extent and stability of the GIS during the LIG. Present-day observations of ice sheet size, elevation and stability, together with paleo elevation information from five deep ice cores, are used to evaluate our ensemble of GIS simulations. Accepted simulations indicate a maximum GIS reduction equivalent to a global mean sea-level rise of 0.8–2.2 m compared to today, with most of the melt occurring in the southwest. The timing of the maximum ice melt over Greenland is simulated between 124 and 122 ka. We furthermore suggest a preferred mean value for the basal sliding parameter, relatively high PDD factors and an average to high atmospheric temperature lapse rate based on training the SICOPOLIS ice sheet model to observations and available LIG proxy data.

Cite

CITATION STYLE

APA

Langebroek, P. M., & Nisancioglu, K. H. (2016). Moderate Greenland ice sheet melt during the last interglacial constrained by present-day observations and paleo ice core reconstructions. The Cryosphere Discussions, (January), 1–35. Retrieved from http://www.the-cryosphere-discuss.net/tc-2016-15/

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free