Monitoring of the Eyjafjallajökull volcanic aerosol plume over the Iberian Peninsula by means of four EARLINET lidar stations

46Citations
Citations of this article
30Readers
Mendeley users who have this article in their library.

Abstract

Lidar and sun-photometer measurements were performed intensively over the Iberian Peninsula (IP) during the eruption of the Eyjafjallaj¶kull volcano (Iceland) in April-May 2010. The volcanic plume reached all the IP stations for the first time on 5 May 2010. A thorough study of the event was conducted for the period 5-8 May. Firstly, the spatial and temporal evolution of the plume was described by means of lidar and sun-photometer measurements supported with backtrajectories. The volcanic aerosol layers observed over the IP were rather thin (<1000 m) with a top height up to 11-12 km. However, in some cases at the beginning of the period the thickness of those layers reached several kilometers in Évora and Madrid. The optical thicknesses associated to those layers were rather low (between 0.013 and 0.020 in average over the whole period), with peak values near 0.10 detected on 7 May. Secondly, the volcanic aerosols were characterized in terms of extinction and backscatter coefficients, lidar ratios, <1000m exponents and linear particle depolarization ratio. Lidar ratios at different sites varied between 30 and 50 sr without a marked spectral dependency. Similar extinction-related <1000m exponents varying between 0.6 and 0.8 were observed at different sites. The temporal evolution of the backscatter-related <1000m exponents points out a possible decrease of the volcanic particle size as the plume moved from west to east. Particle depolarization ratios on the order of 0.06-0.08 confirmed the coexistence of both ash and non-ash particles. Additionally, profiles of mass concentration were obtained with a method using the opposite depolarizing effects of ash particles (strongly depolarizing), non-ash particles (very weakly depolarizing), and sun-photometer observations. In Granada the ash mass concentration was found to be approximately 1.5 times higher than that of non-ash particles, and probably did not exceed the value of 200 1/4g mĝ̂'3 during the whole event. © Author(s) 2012.

Cite

CITATION STYLE

APA

Sicard, M., Guerrero-Rascado, J. L., Navas-Guzmán, F., Preißler, J., Molero, F., Toḿs, S., … Alados-Arboledas, L. (2012). Monitoring of the Eyjafjallajökull volcanic aerosol plume over the Iberian Peninsula by means of four EARLINET lidar stations. Atmospheric Chemistry and Physics. https://doi.org/10.5194/acp-12-3115-2012

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free