Multiparameter RNA and codon optimization: A standardized tool to assess and enhance autologous mammalian gene expression

128Citations
Citations of this article
354Readers
Mendeley users who have this article in their library.

Abstract

Autologous expression of recombinant human proteins in human cells for biomedical research and product development is often hampered by low expression yields limiting subsequent structural and functional analyses. Following RNA and codon optimization, 50 candidate genes representing five classes of human proteins - transcription factors, ribosomal and polymerase subunits, protein kinases, membrane proteins and immunomodulators - all showed reliable, and 86% even elevated expression. Analysis of three representative examples showed no detrimental effect on protein solubility while unaltered functionality was demonstrated for JNK1, JNK3 and CDC2 using optimized constructs. Molecular analysis of a sequence-optimized transgene revealed positive effects at transcriptional, translational, and mRNA stability levels. Since improved expression was consistent in HEK293T, CHO and insect cells, it was not restricted to distinct mammalian cell systems. Additionally, optimized genes represent powerful tools in functional genomics, as demonstrated by the successful rescue of an siRNA-mediated knockdown using a sequence-optimized counterpart. This is the first large-scale study addressing the influence of multiparameter optimization on autologous human protein expression. © 2011 Fath et al.

Cite

CITATION STYLE

APA

Fath, S., Bauer, A. P., Liss, M., Spriestersbach, A., Maertens, B., Hahn, P., … Wagner, R. (2011). Multiparameter RNA and codon optimization: A standardized tool to assess and enhance autologous mammalian gene expression. PLoS ONE, 6(3). https://doi.org/10.1371/journal.pone.0017596

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free