On the nature of large-scale mixing in the stratosphere and mesosphere

65Citations
Citations of this article
27Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Studies of tracer transport in the stratosphere have shown that adiabatic quasi-horizontal tracer evolution is controlled primarily by the large-scale low-frequency component of the flow. This behavior is consistent with the concept of chaotic advection, wherein the Eulerian velocity field is spatially coherent and temporally quasi-regular on timescales over which the Lagrangian evolution is chaotic. In this study, winds from a middle atmosphere general circulation model (the Canadian Middle Atmosphere Model) are used to compare and contrast the nature of tracer evolution in the stratosphere and mesosphere. It is found that the concept of chaotic advection is relevant in the stratosphere but not in the mesosphere. The explanation for this behavior is the increased strength of gravity wave activity in the mesosphere as compared with the stratosphere, which leads to shallower kinetic energy spectra on synoptic scales and a much shorter Eulerian correlation time. The shallower kinetic energy spectra imply that tracer evolution in the mesosphere is spectrally local, in contrast with the spectrally nonlocal regime that prevails in the stratosphere. This means that tracer advection calculations in the mesosphere are controlled primarily by the gravity wave spectrum and are intrinsically resolution dependent. Copyright 2000 by the American Geophysical Union.

Cite

CITATION STYLE

APA

Shepherd, T. G., Koshyk, J. N., & Ngan, K. (2000). On the nature of large-scale mixing in the stratosphere and mesosphere. Journal of Geophysical Research Atmospheres, 105(D10), 12433–12446. https://doi.org/10.1029/2000JD900133

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free