Noise-tolerant dynamic circuit design

42Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Noise in deep submicron technology combined with the move towards dynamic circuit techniques for higher performance have raised concerns about reliability and energy-efficiency of VLSI systems in the deep submicron era. To address this problem, a new noise-tolerant dynamic circuit technique is presented. In addition, the average noise threshold energy (ANTE) and the energy normalized ANTE metrics are proposed for quantifying the noise immunity and energy-efficiency, respectively, of circuit techniques. Simulation results in 0.35 micron CMOS for NAND gate designs indicate that the proposed technique improves the ANTE and energy normalized ANTE by 2.54X and 2.25X over the conventional domino circuit. The improvement in energy normalized ANTE is 1.22X higher than the existing noise-tolerance techniques. A full adder design based on the proposed technique improves the ANTE and energy normalized ANTE by 3.7X and 1.95X over the conventional dynamic circuit. In comparison, the static circuit improves ANTE by 2.2X but degrades the energy normalized ANTE by 11%. In addition, the proposed technique has a smaller area overhead (69%) as compared to the static circuit whose area overhead is 98%.

Cite

CITATION STYLE

APA

Wang, L., & Shanbhag, N. R. (1999). Noise-tolerant dynamic circuit design. Proceedings - IEEE International Symposium on Circuits and Systems, 1. https://doi.org/10.1109/iscas.1999.777950

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free