Phenomenology of buoyancy-driven turbulence: Recent results

75Citations
Citations of this article
49Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In this paper, we describe the recent developments in the field of buoyancy-driven turbulence with a focus on energy spectrum and flux. Scaling and numerical arguments show that the stably-stratified turbulence with moderate stratification has kinetic energy spectrum Eu (k) ∼k-11/5and the kinetic energy flux φu (k) ∼k-4/5, which is called Bolgiano-Obukhov scaling. However, for Prandtl number near unity, the energy flux for the three-dimensional Rayleigh-Bénard convection (RBC) is approximately constant in the inertial range that results in Kolmorogorv's spectrum Eu (k) ∼k-5/3for the kinetic energy. The phenomenology of RBC should apply to other flows where the buoyancy feeds the kinetic energy, e.g. bubbly turbulence and fully-developed Rayleigh Taylor instability. This paper also covers several models that predict the Reynolds and Nusselt numbers of RBC. Recent works show that the viscous dissipation rate of RBC scales as , ∼Ra1.3where is the Rayleigh number.

Cite

CITATION STYLE

APA

Verma, M. K., Kumar, A., & Pandey, A. (2017). Phenomenology of buoyancy-driven turbulence: Recent results. New Journal of Physics, 19(2). https://doi.org/10.1088/1367-2630/aa5d63

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free