Probing confinement resonances by photoionizing Xe inside a C60+ molecular cage

67Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Double photoionization accompanied by loss of n C atoms (n=0, 2, 4, 6) was investigated by merging beams of Xe@C60+ ions and synchrotron radiation and measuring the yields of product ions. The giant 4d dipole resonance of the caged Xe atom has a prominent signature in the cross section for these product channels, which together account for 6.2 ± 1.4 of the total Xe 4d oscillator strength of 10. Compared to that for a free Xe atom, the oscillator strength is redistributed in photon energy due to multipath interference of outgoing Xe 4d photoelectron waves that may be transmitted or reflected by the spherical C60+ molecular cage, yielding so-called confinement resonances. The data are compared with an earlier measurement and with theoretical predictions for this single-molecule photoelectron interferometer system. Relativistic R-matrix calculations for the Xe atom in a spherical potential shell representing the fullerene cage show the sensitivity of the interference pattern to the molecular geometry. © 2013 American Physical Society.

Cite

CITATION STYLE

APA

Phaneuf, R. A., Kilcoyne, A. L. D., Aryal, N. B., Baral, K. K., Esteves-Macaluso, D. A., Thomas, C. M., … Müller, A. (2013). Probing confinement resonances by photoionizing Xe inside a C60+ molecular cage. Physical Review A - Atomic, Molecular, and Optical Physics, 88(5). https://doi.org/10.1103/PhysRevA.88.053402

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free