Pulses of enhanced north Pacific intermediate water ventilation from the Okhotsk Sea and Bering Sea during the last deglaciation

84Citations
Citations of this article
77Readers
Mendeley users who have this article in their library.

Abstract

Under modern conditions only North Pacific Intermediate Water is formed in the northwest Pacific Ocean. This situation might have changed in the past. Recent studies with general circulation models indicate a switch to deep-water formation in the northwest Pacific during Heinrich Stadial 1 (17.5-15.0 ka) of the last glacial termination. Reconstructions of past ventilation changes based on paleoceanographic proxy records are still insufficient to test whether a deglacial mode of deep-water formation in the North Pacific Ocean existed. Here we present deglacial ventilation records based on radiocarbon-derived ventilation ages in combination with epibenthic stable carbon isotopes from the northwest Pacific including the Okhotsk Sea and Bering Sea, the two potential source regions for past North Pacific ventilation changes. Evidence for most rigorous ventilation of the intermediate-depth North Pacific occurred during Heinrich Stadial 1 and the Younger Dryas, simultaneous to significant reductions in Atlantic Meridional Overturning Circulation. Concurrent changes in δ13C and ventilation ages point to the Okhotsk Sea as driver of millennial-scale changes in North Pacific Intermediate Water ventilation during the last deglaciation. Our records additionally indicate that changes in the δ13C intermediate-water (700-1750 m water depth) signature and radiocarbon-derived ventilation ages are in antiphase to those of the deep North Pacific Ocean (>2100 m water depth) during the last glacial termination. Thus, intermediate-and deep-water masses of the northwest Pacific have a differing ventilation history during the last deglaciation. © 2014 Author (s).

Cite

CITATION STYLE

APA

Max, L., Lembke-Jene, L., Riethdorf, J. R., Tiedemann, R., Nürnberg, D., Kühn, H., & MacKensen, A. (2014). Pulses of enhanced north Pacific intermediate water ventilation from the Okhotsk Sea and Bering Sea during the last deglaciation. Climate of the Past, 10(2), 591–605. https://doi.org/10.5194/cp-10-591-2014

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free