Sign up & Download
Sign in

Quantification of PM<sub>2.5</sub> organic carbon sampling artifacts in US networks

by J. C. Chow, J. G. Watson, L.-W. A. Chen, J. Rice, N. H. Frank
Atmospheric Chemistry and Physics ()

Abstract

Field blanks (bQF) and backup filters (quartz-fiber behind quartz-fiber filter; QBQ) have been adopted by US long-term air quality monitoring networks to estimate QPM(2.5) organic carbon (OC) sampling artifacts. This study documents bQF and QBQ carbon levels for the: 1) Interagency Monitoring of Protected Visual Environments (IMPROVE); 2) Speciation Trends Network (STN; part of the Chemical Speciation Network [CSN]); and 3) Southeastern Aerosol Research and Characterization (SEARCH) networks and examines the similarities/differences associated with network-specific sampling protocols. A higher IMPROVE sample volume and smaller filter deposit area results in PM2.5 areal density (mu g/cm(2) on filter) 3-11 times those of STN/CSN and SEARCH samples for the same ambient PM2.5 concentrations, thus reducing the relative contribution of sampling artifacts from passive OC adsorption. A relatively short (1-15 min) passive exposure period of STN/CSN and SEARCH bQF OC (0.8-1 mu g/cm(2)) underestimates positive and negative OC artifacts resulting from passive adsorption or evaporation of semi-volatile organic compounds on quartz-fiber filters. This is supported by low STN/CSN and SEARCH bQF levels and lack of temporal or spatial variability among the sites within the networks. With a much longer period, similar to 7 days of ambient passive exposure, average IMPROVE bQF and QBQ OC are comparable (2.4 +/- 0.5 and 3.1 +/- 0.8 mu g/cm(2), respectively) and more than twice levels found in the STN/CSN and SEARCH networks. Sampling artifacts in STN/CSN were estimated from collocated IMPROVE samples based on linear regression. At six of the eight collocated sites in this study, STN/CSN bQFs underestimated OC artifacts by 11-34%. Using a preceding organic denuder in the SEARCH network minimized passive adsorption on QBQ, but OC on QBQ may not be attributed entirely to the negative sampling artifact (e. g., evaporated or volatilized OC from the front filter deposits after sample collection).

Cite this document (BETA)

Readership Statistics

12 Readers on Mendeley
by Discipline
 
 
by Academic Status
 
33% Ph.D. Student
 
25% Researcher (at an Academic Institution)
 
17% Post Doc
by Country
 
17% Canada
 
8% United Kingdom

Tags

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Already have an account? Sign in