Radar rainfall estimation for the post-event analysis of a Slovenian flash-flood case: Application of the Mountain Reference Technique at C-band frequency

27Citations
Citations of this article
31Readers
Mendeley users who have this article in their library.

Abstract

This article is dedicated to radar rainfall estimation for the post-event analysis of a flash flood that occurred on 18 September 2007 in Slovenia. The utility of the Mountain Reference Technique is demonstrated to quantify rain attenuation effects that affect C-band radar measurements in heavy rain. Maximum path-integrated attenuation between 15 and 20 dB were estimated thanks to mountain returns for path-averaged rain rates between 10 and 15 mm h -1 over a 120-km path. Assuming the reflectivity-attenuation relationship to be known, the proposed technique allows for estimating an effective radar calibration correction factor to be accounted for in the parameterization of the attenuation correction. Screening effects are quantified using a geometrical calculation based on a digitized terrain model of the region. The vertical structure of the reflectivity is modeled with a normalized apparent vertical profile of reflectivity. Implementation of the radar data processing indicates that: (1) the combined correction for radar calibration and attenuation effects allows for obtaining satisfactory radar rain estimates (Nash criterion of 0.8 at the event time scale); (2) due to the attenuation equation instability, it is however compulsory to limit the maximum path-integrated attenuation to be corrected to about 10 dB; (3) the results also prove to be sensitive on the parameterization of reflectivity-attenuation- rainrate relationships. © 2009 Author(s).

Cite

CITATION STYLE

APA

Bouilloud, L., Delrieu, G., Boudevillain, B., Borga, M., & Zanon, F. (2009). Radar rainfall estimation for the post-event analysis of a Slovenian flash-flood case: Application of the Mountain Reference Technique at C-band frequency. Hydrology and Earth System Sciences, 13(7), 1349–1360. https://doi.org/10.5194/hess-13-1349-2009

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free