On the radiative properties of contrail cirrus

38Citations
Citations of this article
21Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Using the observed ice crystal size distribution in contrail cirrus from SUCCESS, we have carried out the scattering and absorption calculations based on a unified theory for light scattering by ice crystals covering all sizes and shapes. We illustrate the effects of ice crystal size and surface roughness on the scattering phase function features for remote sensing applicaitons. The extinction coefficient and single-scattering albedo exhibit a minimum feature at 2.85 μm, referred to as the Christiansen effect, which is particularly pronounced for clouds consisting of a significant number of small ice crystals. Based on a line-by-line equivalent solar model we show from spectral curves that cloud reflection increases as ice crystal sizes beecome smaller, but the cloud abosrption increase is only evident for wavelengths longer than about 2.7 μm. The ice crystal shape has a substantial effect on the cloud reflection and absorption for a given size; more complex ice particles reflect more solar radiation. Finally, we propose a contrail cirrus cloud model consisting of a combination of bullet rosettes (50%), hollow columns (30%), and plates (20%), with sizes ranging from 1 to 90 μm in association with radiation perturbantion studies.

Cite

CITATION STYLE

APA

Liou, K. N., Yang, P., Takano, Y., Sassen, K., Charlock, T., & Arnott, W. (1998). On the radiative properties of contrail cirrus. Geophysical Research Letters, 25(8), 1161–1164. https://doi.org/10.1029/97GL03508

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free