Reproducibility and Repeatability of Five Different Technologies for Bar Velocity Measurement in Resistance Training

106Citations
Citations of this article
211Readers
Mendeley users who have this article in their library.
Get full text

Abstract

This study aimed to analyze the agreement between five bar velocity monitoring devices, currently used in resistance training, to determine the most reliable device based on reproducibility (between-device agreement for a given trial) and repeatability (between-trial variation for each device). Seventeen resistance-trained men performed duplicate trials against seven increasing loads (20-30-40-50-60-70-80 kg) while obtaining mean, mean propulsive and peak velocity outcomes in the bench press, full squat and prone bench pull exercises. Measurements were simultaneously registered by two linear velocity transducers (LVT), two linear position transducers (LPT), two optoelectronic camera-based systems (OEC), two smartphone video-based systems (VBS) and one accelerometer (ACC). A comprehensive set of statistics for assessing reliability was used. Magnitude of errors was reported both in absolute (m s−1) and relative terms (%1RM), and included the smallest detectable change (SDC) and maximum errors (MaxError). LVT was the most reliable and sensitive device (SDC 0.02–0.06 m s−1, MaxError 3.4–7.1% 1RM) and the preferred reference to compare with other technologies. OEC and LPT were the second-best alternatives (SDC 0.06–0.11 m s−1), always considering the particular margins of error for each exercise and velocity outcome. ACC and VBS are not recommended given their substantial errors and uncertainty of the measurements (SDC > 0.13 m s−1).

Cite

CITATION STYLE

APA

Courel-Ibáñez, J., Martínez-Cava, A., Morán-Navarro, R., Escribano-Peñas, P., Chavarren-Cabrero, J., González-Badillo, J. J., & Pallarés, J. G. (2019). Reproducibility and Repeatability of Five Different Technologies for Bar Velocity Measurement in Resistance Training. Annals of Biomedical Engineering, 47(7), 1523–1538. https://doi.org/10.1007/s10439-019-02265-6

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free