RIM15 antagonistic pleiotropy is responsible for differences in fermentation and stress response kinetics in budding yeast

25Citations
Citations of this article
43Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Different natural yeast populations have faced dissimilar selective pressures due to the heterogeneous fermentation substrates available around the world; this increases the genetic and phenotypic diversity in Saccharomyces cerevisiae. In this context, we expect prominent differences between isolates when exposed to a particular condition, such as wine or sake musts. To better comprehend the mechanisms underlying niche adaptation between two S. cerevisiae isolates obtained from wine and sake fermentation processes, we evaluated fermentative and fungicide resistance phenotypes and identify the molecular origin of such adaptive variation. Multiple regions were associated with fermentation rate under different nitrogen conditions and fungicide resistance, with a single QTL co-localizing in all traits. Analysis around this region identified RIM15 as the causative locus driving fungicide sensitivity, together with efficient nitrogen utilization and glycerol production in the wine strain. A null RIM15 variant confers a greater fermentation rate through the utilization of available glucose instead of its storage. However, this variant has a detrimental effect on fungicide resistance since complex sugars are not synthesized and transported into the membrane. Together, our results reveal the antagonist pleiotropic nature of a RIM15 null variant, positively affecting a series of fermentation related phenotypes, but apparently detrimental in the wild.

Cite

CITATION STYLE

APA

Kessi-Pérez, E. I., Araos, S., García, V., Salinas, F., Abarca, V., Larrondo, L. F., … Cubillos, F. A. (2016). RIM15 antagonistic pleiotropy is responsible for differences in fermentation and stress response kinetics in budding yeast. FEMS Yeast Research, 16(3). https://doi.org/10.1093/femsyr/fow021

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free