Sign up & Download
Sign in

Seasonal cycles of biogenic volatile organic compound fluxes and concentrations in a California citrus orchard

by S. Fares, J. H. Park, D. R. Gentner, R. Weber, E. Orme??o, J. Karlik, A. H. Goldstein
Atmospheric Chemistry and Physics ()

Abstract

Orange trees are widely cultivated in Mediterranean climatic regions where they are an important agricultural crop. Citrus have been characterized as emitters of volatile organic compounds (VOC) in chamber studies under controlled environmental conditions, but an extensive characterization at field scale has never been performed using modern measurement methods, and is particularly needed considering the complex interactions between the orchards and the polluted atmosphere in which Citrus is often cultivated. For one year, in a Valencia orange orchard in Exeter, California, we measured fluxes using PTRMS (Proton Transfer Reaction Mass Spectrometer) and eddy covariance for the most abundant VOC typically emitted from citrus vegetation: methanol, acetone, and isoprenoids. Concentration gradients of additional oxygenated and aromatic compounds from the ground level to above the canopy were also measured. In order to characterize concentrations of speciated biogenic VOC (BVOC) in leaves, we analyzed leaf content by GC-MS (Gas Chromatography-Mass Spectrometery) regularly throughout the year. We also characterized in more detail concentrations of speciated BVOC in the air above the orchard by in-situ GC-MS during a few weeks in spring flowering and summer periods. Here we report concentrations and fluxes of the main VOC species emitted by the orchard, discuss how fluxes measured in the field relate to previous studies made with plant enclosures, and describe how VOC content in leaves and emissions change during the year in response to phenological and environmental parameters. The orchard was a source of monoterpenes and oxygenated VOC. The highest emissions were observed during the springtime flowering period, with mid-day fluxes above 2 nmol mg -2 s -1 for methanol and up to 1 nmol m -2 s -1 for acetone and monoterpenes. During hot summer days emissions were not as high as we expected considering the known dependence of biogenic emissions on temperature. We provide evidence that thickening of leaf cuticle wax content limited gaseous emissions during the summer. © 2012 Author(s).

Cite this document (BETA)

Authors on Mendeley

Readership Statistics

8 Readers on Mendeley
by Discipline
 
 
 
by Academic Status
 
38% Ph.D. Student
 
25% Post Doc
 
13% Student (Master)

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Already have an account? Sign in