Sign up & Download
Sign in

Second-generation products contribute substantially to the particle-phase organic material produced by β-caryophyllene ozonolysis

by Y. J. Li, Q. Chen, M. I. Guzman, C. K. Chan, S. T. Martin
Atmospheric Chemistry and Physics ()


The production of secondary organic aerosol (SOA) by the dark ozonolysis of gas-phase beta-caryophyllene was studied. The experiments were conducted in a continuous-flow environmental chamber for organic particle mass concentrations of 0.5 to 30 mu g m(-3) and with ozone in excess, thereby allowing the study of second-generation particle-phase products under atmospherically relevant conditions. The particle-phase products were characterized by an ultra-performance liquid chromatograph equipped with an electrospray ionization time-of-flight mass spectrometer (UPLC-ESI-ToF-MS). Fragmentation mass spectra were used for the structural elucidation of each product, and the structures were confirmed as consistent with the accurate m/z values of the parent ions. In total, fifteen products were identified. Of these, three are reported for the first time. The structures showed that 9 out of 15 particle-phase products were second generation, including all three of the new products. The relative abundance of the second-generation products was approximately 90% by mass among the 15 observed products. The O:C and H:C elemental ratios of the 15 products ranged from 0.13 to 0.50 and from 1.43 to 1.60, respectively. Fourteen of the products contained 3 to 5 oxygen atoms. A singular product, which was one of the three newly identified ones, had 7 oxygen atoms, including 1 carboxylic group, 2 carbonyl groups, and 3 hydroxyl groups. It was identified as 2, 3-dihydroxy-4-[2-(4-hydroxy-3-oxobutyl)3, 3-dimethylcyclobutyl]-4-oxobutanoic acid (C14H22O7). The estimated saturation vapor pressure of this product is 3.3x10(-13) Pa, making this product a candidate contributor to new particle formation in the atmosphere.

Cite this document (BETA)

Readership Statistics

14 Readers on Mendeley
by Discipline
by Academic Status
21% Post Doc
14% Researcher (at a non-Academic Institution)
14% Ph.D. Student

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Already have an account? Sign in