Sequence capture and phylogenetic utility of genomic ultraconserved elements obtained from pinned insect specimens

124Citations
Citations of this article
191Readers
Mendeley users who have this article in their library.

Abstract

Obtaining sequence data from historical museum specimens has been a growing research interest, invigorated by next-generation sequencing methods that allow inputs of highly degraded DNA. We applied a target enrichment and next-generation sequencing protocol to generate ultraconserved elements (UCEs) from 51 large carpenter bee specimens (genus Xylocopa), representing 25 species with specimen ages ranging from 2-121 years. We measured the correlation between specimen age and DNA yield (pre- and post-library preparation DNA concentration) and several UCE sequence capture statistics (raw read count, UCE reads on target, UCE mean contig length and UCE locus count) with linear regression models.We performed piecewise regression to test for specific breakpoints in the relationship of specimen age and DNA yield and sequence capture variables. Additionally, we compared UCE data from newer and older specimens of the same species and reconstructed their phylogeny in order to confirm the validity of our data. We recovered 6-972 UCE loci from samples with pre-library DNA concentrations ranging from 0.06-9.8 ng/μL. All investigated DNA yield and sequence capture variables were significantly but only moderately negatively correlated with specimen age. Specimens of age 20 years or less had significantly higher pre- and post-library concentrations, UCE contig lengths, and locus counts compared to specimens older than 20 years. We found breakpoints in our data indicating a decrease of the initial detrimental effect of specimen age on pre- and postlibrary DNA concentration and UCE contig length starting around 21-39 years after preservation. Our phylogenetic results confirmed the integrity of our data, giving preliminary insights into relationships within Xylocopa.We consider the effect of additional factors not measured in this study on our age-related sequence capture results, such as DNA fragmentation and preservation method, and discuss the promise of the UCE approach for largescale projects in insect phylogenomics using museum specimens.

Cite

CITATION STYLE

APA

Blaimer, B. B., Lloyd, M. W., Guillory, W. X., & Brady, S. G. (2016). Sequence capture and phylogenetic utility of genomic ultraconserved elements obtained from pinned insect specimens. PLoS ONE, 11(8). https://doi.org/10.1371/journal.pone.0161531

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free