The set2/Rpd3S pathway suppresses cryptic transcription without regard to gene length or transcription frequency

49Citations
Citations of this article
77Readers
Mendeley users who have this article in their library.

Abstract

In cells lacking the histone methyltransferase Set2, initiation of RNA polymerase II transcription occurs inappropriately within the protein-coding regions of genes, rather than being restricted to the proximal promoter. It was previously reported that this "cryptic" transcription occurs preferentially in long genes, and in genes that are infrequently transcribed. Here, we mapped the transcripts produced in an S. cerevisiae strain lacking Set2, and applied rigorous statistical methods to identify sites of cryptic transcription at high resolution. We find that suppression of cryptic transcription occurs independent of gene length or transcriptional frequency. Our conclusions differ with those reported previously because we obtained a higher-resolution dataset, we accounted for the fact that gene length and transcriptional frequency are not independent variables, and we accounted for several ascertainment biases that make cryptic transcription easier to detect in long, infrequently transcribed genes. These new results and conclusions have implications for many commonly used genomic analysis approaches, and for the evolution of high-fidelity RNA polymerase II transcriptional initiation in eukaryotes. © 2009 Lickwar et al.

Cite

CITATION STYLE

APA

Lickwar, C. R., Rao, B., Shabalin, A. A., Nobel, A. B., Strahl, B. D., & Lieb, J. D. (2009). The set2/Rpd3S pathway suppresses cryptic transcription without regard to gene length or transcription frequency. PLoS ONE, 4(3). https://doi.org/10.1371/journal.pone.0004886

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free