Signaling logic of activity-triggered dendritic protein synthesis: An mTOR gate but not a feedback switch

32Citations
Citations of this article
70Readers
Mendeley users who have this article in their library.

Abstract

Changes in synaptic efficacy are believed to form the cellular basis for memory. Protein synthesis in dendrites is needed to consolidate long-term synaptic changes. Many signals converge to regulate dendritic protein synthesis, including synaptic and cellular activity, and growth factors. The coordination of these multiple inputs is especially intriguing because the synthetic and control pathways themselves are among the synthesized proteins. We have modeled this system to study its molecular logic and to understand how runaway feedback is avoided. We show that growth factors such as brain-derived neurotrophic factor (BDNF) gate activity-triggered protein synthesis via mammalian target of rapamycin (mTOR). We also show that bistability is unlikely to arise from the major protein synthesis pathways in our model, even though these include several positive feedback loops. We propose that these gating and stability properties may serve to suppress runaway activation of the pathway, while preserving the key role of responsiveness to multiple sources of input.

Cite

CITATION STYLE

APA

Jain, P., & Bhalla, U. S. (2009). Signaling logic of activity-triggered dendritic protein synthesis: An mTOR gate but not a feedback switch. PLoS Computational Biology, 5(2). https://doi.org/10.1371/journal.pcbi.1000287

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free