Sign up & Download
Sign in

Simulated radiative forcing from contrails and contrail cirrus

by C. C. Chen, A. Gettelman
Atmospheric Chemistry and Physics ()

Abstract

A comprehensive general circulation model including ice supersaturation is used to estimate the climate impact of aviation induced contrails. The model uses a realistic aviation emissions inventory for 2006 to initiate contrails, and allows them to evolve consistently with the model hydrologic cycle. The radiative forcing from linear contrails is very sensitive to the diurnal cycle. For linear contrails, including the diurnal cycle of air traffic reduces the estimated radiative forcing by 29%, and for contrail cirrus estimates, the radiative forcing is reduced by 25%. Estimated global radiative forcing from linear contrails is 0.0031 ± 0.0005 Wm−2. The linear contrail radiative forcing is found to exhibit a strong diurnal cycle. The contrail cirrus radiative forcing is less sensitive to the diurnal cycle of flights. The estimated global radiative forcing from contrail cirrus is 0.013 ± 0.01 Wm−2. Over regions with the highest air traffic, the regional effect can be as large as 1 Wm−2.

Cite this document (BETA)

Readership Statistics

5 Readers on Mendeley
by Discipline
 
 
by Academic Status
 
40% Associate Professor
 
40% Post Doc
 
20% Professor
by Country
 
20% Germany

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Already have an account? Sign in