Size-dependent activation of aerosols into cloud droplets at a subarctic background site during the second Pallas Cloud Experiment (2nd PaCE): Method development and data evaluation

30Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.

Abstract

In situ measurements of aerosol water uptake and activation of aerosols into cloud droplets provide information on how aerosols influence the microphysical properties of clouds. Here we present a computational scheme that can be used in connection with such measurements to assess the influence of the particle hygroscopicity and mixing state (in terms of the water uptake) on the cloud nucleating ability of particles. Additionally, it provides an estimate for the peak supersaturation of water vapour reached during the formation of the observed cloud(s). The method was applied in interpreting results of a measurement campaign that focused on aerosol-cloud interactions taking place at a subarctic background site located in Northern Finland (second Pallas Cloud Experiment, 2nd PaCE). A set of case studies was conducted, and the observed activation behavior could be successfully explained by a maximum supersaturation that varied between 0.18 and 0.26% depending on the case. In these cases, the diameter corresponding to the activated fraction of 50% was in the range of 110-140 nm, and the particles were only moderately water soluble with hygroscopic growth factors varying between 1.1 and 1.4. The conducted analysis showed that the activated fractions and the total number of particles acting as CCN are expected to be highly sensitive to the particle hygroscopic growth properties. For example, the latter quantity varied over a factor between 1.8 and 3.1, depending on the case, when the mean hygroscopic growth factors were varied by 10%. Another important conclusion is that size-dependent activation profiles carries information on the mixing state of particles. © 2009 Author(s).

Cite

CITATION STYLE

APA

Anttila, T., Vaattovaara, P., Komppula, M., Hyvärinen, A. P., Lihavainen, H., Kerminen, V. M., & Laaksonen, A. (2009). Size-dependent activation of aerosols into cloud droplets at a subarctic background site during the second Pallas Cloud Experiment (2nd PaCE): Method development and data evaluation. Atmospheric Chemistry and Physics, 9(14), 4841–4854. https://doi.org/10.5194/acp-9-4841-2009

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free