Small but powerful: Top predator local extinction affects ecosystem structure and function in an intermittent stream

36Citations
Citations of this article
142Readers
Mendeley users who have this article in their library.

Abstract

Top predator loss is a major global problem, with a current trend in biodiversity loss towards high trophic levels that modifies most ecosystems worldwide. Most research in this area is focused on large-bodied predators, despite the high extinction risk of small-bodied freshwater fish that often act as apex consumers. Consequently, it remains unknown if intermittent streams are affected by the consequences of top-predators' extirpations. The aim of our research was to determine how this global problem affects intermittent streams and, in particular, if the loss of a small-bodied top predator (1) leads to a 'mesopredator release ', affects primary consumers and changes whole community structures, and (2) triggers a cascade effect modifying the ecosystem function. To address these questions, we studied the topdown effects of a small endangered fish species, Barbus meridionalis (the Mediterranean barbel), conducting an enclosure/exclosure mesocosm experiment in an intermittent stream where B. meridionalis became locally extinct following a wildfire.We found that top predator absence led to 'mesopredator release' , and also to 'prey release' despite intraguild predation, which contrasts with traditional food web theory. In addition, B. meridionalis extirpation changed whole macroinvertebrate community composition and increased total macroinvertebrate density. Regarding ecosystem function, periphyton primary production decreased in apex consumer absence. In this study, the apex consumer was functionally irreplaceable; its local extinction led to the loss of an important functional role that resulted in major changes to the ecosystem's structure and function. This study evidences that intermittent streams can be affected by the consequences of apex consumers' extinctions, and that the loss of small-bodied top predators can lead to large ecosystem changes. We recommend the reintroduction of small-bodied apex consumers to systems where they have been extirpated, to restore ecosystem structure and function.

Cite

CITATION STYLE

APA

Rodríguez-Lozano, P., Verkaik, I., Rieradevall, M., & Prat, N. (2015). Small but powerful: Top predator local extinction affects ecosystem structure and function in an intermittent stream. PLoS ONE, 10(2). https://doi.org/10.1371/journal.pone.0117630

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free