'Smoking Genes': A genetic association study

43Citations
Citations of this article
75Readers
Mendeley users who have this article in their library.

Abstract

Some controversy exists on the specific genetic variants that are associated with nicotine dependence and smoking-related phenotypes. The purpose of this study was to analyse the association of smoking status and smoking-related phenotypes (included nicotine dependence) with 17 candidate genetic variants: CYP2A6*1×2, CYP2A6*2 (1799T>A) [rs1801272], CYP2A6*9 (-48T>G) [rs28399433], CYP2A6*12, CYP2A13*2 (3375C>T) [rs8192789], CYP2A13*3 (7520C>G), CYP2A13*4 (579G>A), CYP2A13*7 (578C>T) [rs72552266], CYP2B6*4 (785A>G), CYP2B6*9 (516G>T), CHRNA3 546C>T [rs578776], CHRNA5 1192G>A [rs16969968], CNR1 3764C>G [rs6928499], DRD2-ANKK1 2137G>A (Taq1A) [rs1800497], 5HTT LPR, HTR2A -1438A>G [rs6311] and OPRM1 118A>G [rs1799971]. We studied the genotypes of the aforementioned polymorphisms in a cohort of Spanish smokers (cases, N = 126) and ethnically matched never smokers (controls, N = 80). The results showed significant between-group differences for CYP2A6*2 and CYP2A6*12 (both P<0.001). Compared with carriers of variant alleles, the odds ratio (OR) for being a non-smoker in individuals with the wild-type genotype of CYP2A6*12 and DRD2-ANKK1 2137G>A (Taq1A) polymorphisms was 3.60 (95%CI: 1.75, 7.44) and 2.63 (95%CI: 1.41, 4.89) respectively. Compared with the wild-type genotype, the OR for being a non-smoker in carriers of the minor CYP2A6*2 allele was 1.80 (95%CI: 1.24, 2.65). We found a significant genotype effect (all P≤0.017) for the following smoking-related phenotypes: (i) cigarettes smoked per day and CYP2A13*3; (ii) pack years smoked and CYP2A6*2, CYP2A6*1×2, CYP2A13*7, CYP2B6*4 and DRD2-ANKK1 2137G&A (Taq1A); (iii) nicotine dependence (assessed with the Fagestrom test) and CYP2A6*9. Overall, our results suggest that genetic variants potentially involved in nicotine metabolization (mainly, CYP2A6 polymorphisms) are those showing the strongest association with smoking-related phenotypes, as opposed to genetic variants influencing the brain effects of nicotine, e.g., through nicotinic acetylcholine (CHRNA5), serotoninergic (HTR2A), opioid (OPRM1) or cannabinoid receptors (CNR1). © 2011 Verde et al.

Cite

CITATION STYLE

APA

Verde, Z., Santiago, C., González-Moro, J. M. R., de Lucas Ramos, P., Martín, S. L., Bandrés, F., … Gómez-Gallego, F. (2011). “Smoking Genes”: A genetic association study. PLoS ONE, 6(10). https://doi.org/10.1371/journal.pone.0026668

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free