A study of the impact of synoptic weather conditions and water vapor on aerosol-cloud relationships over major urban clusters of China

36Citations
Citations of this article
50Readers
Mendeley users who have this article in their library.

Abstract

The relationships between aerosol optical depth (AOD), cloud cover (CC), and cloud top pressure (CTP) over three major urban clusters in China are studied under different sea level pressure (SLP) and water vapor (WV) regimes using a decade (2003-2013) of MODIS satellite-retrieved data. Over all urban clusters, for all SLP regimes, CC is found to increase with AOD, thus pointing out that the CC dependence on AOD cannot be explained by synoptic covariation, as approximated by SLP, alone. WV is found to have a stronger impact on CC than AOD. This impact is more pronounced at high aerosol load than at low aerosol load. Hence, studies of AOD-CC relationships, based on satellite data, will greatly overestimate the AOD impact on CC in regions where AOD and WV have similar seasonal variations, while they will probably underestimate the AOD impact in regions where AOD and WV have opposite seasonal variations. Further, this impact shows that the hydrological cycle interferes with the aerosol climatic impact and we need to improve our understanding of this interference. Our results also suggest that studies attributing CTP long-term changes to changes in aerosol load might have a WV bias.

Cite

CITATION STYLE

APA

Kourtidis, K., Stathopoulos, S., Georgoulias, A. K., Alexandri, G., & Rapsomanikis, S. (2015). A study of the impact of synoptic weather conditions and water vapor on aerosol-cloud relationships over major urban clusters of China. Atmospheric Chemistry and Physics, 15(19), 10955–10964. https://doi.org/10.5194/acp-15-10955-2015

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free