Sign up & Download
Sign in

Study of the kinetics and equilibria of the oligomerization reactions of 2-methylglyceric acid

by A. W. Birdsall, C. A. Zentner, M. J. Elrod
Atmospheric Chemistry and Physics ()

Abstract

The presence of a variety of chemical species related to the gaseous precursor isoprene in ambient secondary organic aerosol (SOA) has stimulated investigations of the nature of SOA-phase chemical processing. Recent work has demonstrated that 2-methylglyceric acid (2-MG) is an important isoprene-derived ambient SOA component and atmospheric chamber experiments have suggested that 2-MG may exist in oligomeric form (as oligoesters) under conditions of low SOA water content. In order to better understand the thermodynamic and kinetic parameters of such oligomerization reactions, nuclear magnetic resonance techniques were used to study the bulk phase acid-catalyzed aqueous reactions (Fischer esterification) of 2-MG. While the present results indicate that 2-MG oligoesters are formed in the bulk phase with similar water content equilibrium dependences as observed in atmospheric chamber SOA experiments, the acid-catalyzed rate of the Fischer esterification mechanism may be too slow to rationalize the 2-MG oligoester production timescales observed in the atmospheric chamber experiments. Furthermore, it appears that unrealistically high ambient SOA acidities would also be required for significant 2-MG oligoester content to arise via Fischer esterification. Therefore, the present results suggest that other, more kinetically facile, esterification mechanisms may be necessary to rationalize the existence of 2-MG oligomers in atmospheric chamber-generated and ambient SOA.

Cite this document (BETA)

Readership Statistics

11 Readers on Mendeley
by Discipline
 
 
 
by Academic Status
 
27% Post Doc
 
18% Student (Bachelor)
 
18% Ph.D. Student

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Already have an account? Sign in