Sign up & Download
Sign in

Sub-10 nm particle growth by vapor condensation – effects of vapor molecule size and particle thermal speed

by T. Nieminen, K. E. J. Lehtinen, M. Kulmala
Atmospheric Chemistry and Physics ()


The growth of freshly formed nanoparticles has been investigated. A new analytical expression based on a recently developed exact solution for the condensational growth rate has been derived. Based on the new growth rate, a new approximate but accurate analytical expression for growth time has been derived. The expression includes transition regime effects on growth, molecule size effects on the collision cross section and particle thermal speed effects on the relative collisional speeds - the last two of which are typically neglected, but may have significant effects when dealing with the growth of freshly nucleated particles. To demonstrate the use of the derived expressions, the contribution of sulphuric acid and organic compounds on sub 3 nm and sub 10 nm particle growth rates has been studied. For sulphuric acid also the effect of hydration as function of relative humidity has been taken into account. According to the new expression the sulphuric acid concentration needed for 1 nm/h growth in sub 3 nm range is ca. 1.5x10(7) cm(-3), which is a factor of 1.5 smaller than values typically used in aerosol physics based on standard model in kinetic regime.

Cite this document (BETA)

Readership Statistics

14 Readers on Mendeley
by Discipline
by Academic Status
29% Ph.D. Student
29% Professor
14% Post Doc
by Country
7% India
7% United States

Sign up today - FREE

Mendeley saves you time finding and organizing research. Learn more

  • All your research in one place
  • Add and import papers easily
  • Access it anywhere, anytime

Start using Mendeley in seconds!

Already have an account? Sign in