Surrogate-assisted multi-swarm particle swarm optimization of morphing airfoils

2Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.
Get full text

Abstract

This paper presents a study to design, analyze and optimize an airfoil trailing edge, i.e., shape morphing of the airfoil trailing-edge topology. The primary idea behind morphing is to improve the wing performance for different flight conditions. Modern aircrafts are designed for unique operating conditions. In order to obtain the best configuration, a dynamic optimization algorithm has been developed based on a Multiswarm Particle Swarm Optimization algorithm (MPSO), a population based stochastic optimization algorithm inspired by the social interaction among insects or animals. However, with respect to aircraft design and in the context of computational fluid dynamics (CFD), function evaluations are computationally expensive; typically requiring large computational grids to obtain a reasonable representation of the flow-field. In this paper, the developed MPSO algorithm is combined with a Kriging surrogate representation of the objective space, to alleviate the computational effort. The topology of the trailing edge is defined and characterized by four control points. Two different hypothetical mission profiles are analyzed. The results exhibit an improvement of around 2% with respect to the original airfoil for every flight condition treated.

Cite

CITATION STYLE

APA

Fico, F., Urbino, F., Carrese, R., Marzocca, P., & Li, X. (2017). Surrogate-assisted multi-swarm particle swarm optimization of morphing airfoils. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 10142 LNAI, pp. 124–133). Springer Verlag. https://doi.org/10.1007/978-3-319-51691-2_11

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free