Transcranial direct current stimulation (tDCS) for idiopathic Parkinson's disease

49Citations
Citations of this article
393Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Idiopathic Parkinson's disease (IPD) is a neurodegenerative disorder, with the severity of the disability usually increasing with disease duration. IPD affects patients' health-related quality of life, disability, and impairment. Current rehabilitation approaches have limited effectiveness in improving outcomes in patients with IPD, but a possible adjunct to rehabilitation might be non-invasive brain stimulation by transcranial direct current stimulation (tDCS) to modulate cortical excitability, and hence to improve these outcomes in IPD. Objectives: To assess the effectiveness of tDCS in improving motor and non-motor symptoms in people with IPD. Search methods: We searched the following databases (until February 2016): the Cochrane Central Register of Controlled Trials (CENTRAL; the Cochrane Library ; 2016 , Issue 2), MEDLINE, EMBASE, CINAHL, AMED, Science Citation Index, the Physiotherapy Evidence Database (PEDro), Rehabdata, and Inspec. In an effort to identify further published, unpublished, and ongoing trials, we searched trial registers and reference lists, handsearched conference proceedings, and contacted authors and equipment manufacturers. Selection criteria: We included only randomised controlled trials (RCTs) and randomised controlled cross-over trials that compared tDCS versus control in patients with IPD for improving health-related quality of life , disability, and impairment. Data collection and analysis: Two review authors independently assessed trial quality (JM and MP) and extracted data (BE and JM). If necessary, we contacted study authors to ask for additional information. We collected information on dropouts and adverse events from the trial reports. Main results: We included six trials with a total of 137 participants. We found two studies with 45 participants examining the effects of tDCS compared to control (sham tDCS) on our primary outcome measure, impairment, as measured by the Unified Parkinson's Disease Rating Scale (UPDRS). There was very low quality evidence for no effect of tDCS on change in global UPDRS score ( mean difference (MD) -7.10 %, 95% confidence interval (CI -19.18 to 4.97; P = 0.25, I2 = 21%, random-effects model). However, there was evidence of an effect on UPDRS part III motor subsection score at the end of the intervention phase (MD -14.43%, 95% CI -24.68 to -4.18; P = 0.006, I2 = 2%, random-effects model; very low quality evidence). One study with 25 participants measured the reduction in off and on time with dyskinesia, but there was no evidence of an effect (MD 0.10 hours, 95% CI -0.14 to 0.34; P = 0.41, I2 = 0%, random-effects model; and MD 0.00 hours, 95% CI -0.12 to 0.12; P = 1, I2 = 0%, random- effects model, respectively; very low quality evidence). Two trials with a total of 41 participants measured gait speed using measures of timed gait at the end of the intervention phase, revealing no evidence of an effect ( standardised mean difference (SMD) 0.50, 95% CI -0.17 to 1.18; P = 0.14, I2 = 11%, random-effects model; very low quality evidence). Another secondary outcome was health-related quality of life and we found one study with 25 participants reporting on the physical health and mental health aspects of health-related quality of life (MD 1.00 SF-12 score, 95% CI -5.20 to 7.20; I2 = 0%, inverse variance method with random-effects model; very low quality evidence; and MD 1.60 SF-12 score, 95% CI -5.08 to 8.28; I2 = 0%, inverse variance method with random-effects model; very low quality evidence, respectively). We found no study examining the effects of tDCS for improving activities of daily living. In two of six studies, dropouts , adverse events, or deaths occurring during the intervention phase were reported. There was insufficient evidence that dropouts , adverse effects, or deaths were higher with intervention (risk difference (RD) 0.04, 95% CI -0.05 to 0.12; P = 0.40, I2 = 0%, random-effects model; very low quality evidence). We found one trial with a total of 16 participants examining the effects of tDCS plus movement therapy compared to control (sham tDCS) plus movement therapy on our secondary outcome, gait speed at the end of the intervention phase, revealing no evidence of an effect (MD 0.05 m/s, 95% CI -0.15 to 0.25; inverse variance method with random-effects model; very low quality evidence). We found no evidence of an effect regarding differences in dropouts and adverse effects between intervention and control groups (RD 0.00, 95% CI -0.21 to 0.21; Mantel-Haenszel method with random-effects model; very low quality evidence). Authors' conclusions: There is insufficient evidence to determine the effects of tDCS for reducing off time ( when the symptoms are not controlled by the medication) and on time with dyskinesia ( time that symptoms are controlled but the person still experiences involuntary muscle movements ) , and for improving health- related quality of life, disability, and impairment in patients with IPD. Evidence of very low quality indicates no difference in dropouts and adverse events between tDCS and control groups.

Cite

CITATION STYLE

APA

Elsner, B., Kugler, J., Pohl, M., & Mehrholz, J. (2016, July 18). Transcranial direct current stimulation (tDCS) for idiopathic Parkinson’s disease. Cochrane Database of Systematic Reviews. John Wiley and Sons Ltd. https://doi.org/10.1002/14651858.CD010916.pub2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free