Treatment of prion disease with heterologous prion proteins

13Citations
Citations of this article
62Readers
Mendeley users who have this article in their library.

Abstract

Prion diseases such as Creutzfeldt-Jakob disease in humans, bovine spongiform encephalopathy in cattle, and scrapie in sheep are fatal neurodegenerative diseases for which there is no effective treatment. The pathology of these diseases involves the conversion of a protease sensitive form of the cellular prion protein (PrPC) into a protease resistant infectious form (PrPsc or PrPres). Both in vitro (cell culture and cell free conversion assays) and in vivo (animal) studies have demonstrated the strong dependence of this conversion process on protein sequence homology between the initial prion inoculum and the host's own cellular prion protein. The presence of non-homologous (heterologous) proteins is often inhibitory to this conversion process. We hypothesize that the presence of heterologous prion proteins from one species might therefore constitute an effective treatment for prion disease in another species. To test this hypothesis, we infected mice intracerebrally with murine adapted RML-Chandler scrapie and treated them with heterologous prion protein (purified bacterially expressed recombinant hamster prion protein) or vehicle alone. Treated animals demonstrated reduced disease associated pathology, decreased accumulation of protease-resistant disease-associated prion protein, with delayed onset of clinical symptoms and motor deficits. This was concomitant with significantly increased survival times relative to mock-treated animals. These results provide proof of principle that recombinant hamster prion proteins can effectively and safely inhibit prion disease in mice, and suggest that hamster or other non-human prion proteins may be a viable treatment for prion diseases in humans.

Cite

CITATION STYLE

APA

Skinner, P. J., Kim, H. O., Bryant, D., Kinzel, N. J., Reilly, C., Priola, S. A., … Seelig, D. M. (2015). Treatment of prion disease with heterologous prion proteins. PLoS ONE, 10(7). https://doi.org/10.1371/journal.pone.0131993

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free