Uncertainty in computations of the spread of warm water in a river – Lessons from Environmental Impact Assessment case study

14Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

The present study aims at the evaluation of sources of uncertainty in modelling of heat transport in a river caused by the discharge coming from a cooling system of a designed gas-stem power plant. This study was a part of an Environmental Impact Assessment and was based on two-dimensional modelling of temperature distribution in an actual river. The problems with the proper description of the computational domain, velocity field and hydraulic characteristics were considered in the work. An in-depth discussion on the methods of evaluation of the dispersion coefficients in the model comprising of all four components of the dispersion tensor was carried out. It was shown that in natural rivers all components of a dispersion tensor should be taken into account to qualitatively reflect the proper shape of temperature distributions. The results considerably depend on the 2-D velocity field as well as hydraulic and morphometric characteristics of the flow. Numerical methods and their influence on the final results of computations were also discussed. All computations were based upon a real case study performed in Vistula River in Poland. © 2012 Author(s).

Cite

CITATION STYLE

APA

Kalinowska, M. B., & Rowinski, P. M. (2012). Uncertainty in computations of the spread of warm water in a river – Lessons from Environmental Impact Assessment case study. Hydrology and Earth System Sciences, 16(11), 4177–4190. https://doi.org/10.5194/hess-16-4177-2012

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free