Uptake of HO2 radicals onto Arizona test dust particles using an aerosol flow tube

30Citations
Citations of this article
21Readers
Mendeley users who have this article in their library.

Abstract

Uptake coefficients for HO2 radicals onto Arizona test dust (ATD) aerosols were measured at room temperature and atmospheric pressure using an aerosol flow tube and the sensitive fluorescence assay by gas expansion (FAGE) technique, enabling HO2 concentrations in the range 3-10 × 108 molecule cmĝ̂'3 to be investigated. The uptake coefficients were measured as 0.031 ± 0.008 and 0.018 ± 0.006 for the lower and higher HO2 concentrations, respectively, over a range of relative humidities (5-76%). A time dependence for the HO2 uptake onto the ATD aerosols was observed, with larger uptake coefficients observed at shorter reaction times. The combination of time and HO2 concentration dependencies suggest either the partial saturation of the dust surface or that a chemical component of the dust is partially consumed whilst the aerosols are exposed to HO2. A constrained box model is used to show that HO 2 uptake to dust surfaces may be an important loss pathway of HO 2 in the atmosphere. © Author(s) 2014. CC Attribution 3.0 License.

Cite

CITATION STYLE

APA

Matthews, P. S. J., Baeza-Romero, M. T., Whalley, L. K., & Heard, D. E. (2014). Uptake of HO2 radicals onto Arizona test dust particles using an aerosol flow tube. Atmospheric Chemistry and Physics, 14(14), 7397–7408. https://doi.org/10.5194/acp-14-7397-2014

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free