Wave activity in the tropical tropopause layer in seven reanalysis and four chemistry climate model data sets

19Citations
Citations of this article
38Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Sub-seasonal variability including equatorial waves significantly influence the dehydration and transport processes in the tropical tropopause layer (TTL). This study investigates the wave activity in the TTL in 7 reanalysis data sets (RAs; NCEP1, NCEP2, ERA40, ERA-Interim, JRA25, MERRA, and CFSR) and 4 chemistry climate models (CCMs; CCSRNIES, CMAM, MRI, and WACCM) using the zonal wave number-frequency spectral analysis method with equatorially symmetric- antisymmetric decomposition. Analyses are made for temperature and horizontal winds at 100 hPa in the RAs and CCMs and for outgoing longwave radiation (OLR), which is a proxy for convective activity that generates tropopause-level disturbances, in satellite data and the CCMs. Particular focus is placed on equatorial Kelvin waves, mixed Rossby-gravity (MRG) waves, and the Madden-Julian Oscillation (MJO). The wave activity is defined as the variance, i.e., the power spectral density integrated in a particular zonal wave number-frequency region. It is found that the TTL wave activities show significant difference among the RAs, ranging from ∼0.7 (for NCEP1 and NCEP2) to∼1.4 (for ERA-Interim, MERRA, and CFSR) with respect to the averages from the RAs. The TTL activities in the CCMs lie generally within the range of those in the RAs, with a few exceptions. However, the spectral features in OLR for all the CCMs are very different from those in the observations, and the OLR wave activities are too low for CCSRNIES, CMAM, and MRI. It is concluded that the broad range of wave activity found in the different RAs decreases our confidence in their validity and in particular their value for validation of CCM performance in the TTL, thereby limiting our quantitative understanding of the dehydration and transport processes in the TTL. © 2012 American Geophysical Union. All Rights Reserved.

Cite

CITATION STYLE

APA

Fujiwara, M., Suzuki, J., Gettelman, A., Hegglin, M. I., Akiyoshi, H., & Shibata, K. (2012). Wave activity in the tropical tropopause layer in seven reanalysis and four chemistry climate model data sets. Journal of Geophysical Research Atmospheres, 117(12). https://doi.org/10.1029/2011JD016808

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free