Aircraft-based aerosol size and composition measurements during ACE-Asia using an Aerodyne aerosol mass spectrometer

N/ACitations
Citations of this article
93Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

An Aerodyne aerosol mass spectrometer (AMS) was deployed during the Aerosol Characterization Experiment-Asia (ACE-Asia) field campaign on board the Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft to measure the size-resolved chemical composition of submicron aerosols in the outflow from eastern Asia. Research flights were carried out from 31 March to 1 May 2001 in an area that covered 127°E-135°E and 32°N-38°N. Valid data from the AMS were obtained during 15 out of a total of 19 research flights. During the mission the AMS measured distinct layers (from the boundary layer to ∼3700 m) of submicron aerosols composed of sulfate, ammonium, and organics as the major nonrefractory components, separated by layers with much lower aerosol concentrations. Sulfate and organics mass concentrations of up to 10 μg m-3 and 13 μg m-3, respectively, were measured in some pollution layers. Back-trajectory analysis shows that the polluted layers originated in urban and industrial areas of China and Korea. The mass-weighed size distribution of the submicron sulfate was relatively constant from day to day and layer to layer, with an aerodynamic diameter mode of 400-500 nm and a width (full width half maximum) of about 450 nm in most of the layers. On the days with low influence of dust in the aerosol outflow, as indicated by other instruments aboard the Twin Otter, the total mass of nonrefractory aerosols estimated by the AMS correlated well with total volume of aerosols measured by a differential mobility analyzer. © 2003 by the American Geophysical Union.

Cite

CITATION STYLE

APA

Bahreini, R., Jimenez, J. L., Wang, J., Flagan, R. C., Seinfeld, J. H., Jayne, J. T., & Worsnop, D. R. (2003). Aircraft-based aerosol size and composition measurements during ACE-Asia using an Aerodyne aerosol mass spectrometer. Journal of Geophysical Research: Atmospheres, 108(23). https://doi.org/10.1029/2002jd003226

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free