Autism, asperger syndrome and brain mechanisms for the attribution of mental states to animated shapes

1.1kCitations
Citations of this article
1.1kReaders
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Ten able adults with autism or Asperger syndrome and 10 normal volunteers were PET scanned while watching animated sequences. The animations depicted two triangles moving about on a screen in three different conditions: moving randomly, moving in a goal-directed fashion (chasing, fighting), and moving interactively with implied intentions (coaxing, tricking). The last condition frequently elicited descriptions in terms of mental states that viewers attributed to the triangles (mentalizing). The autism group gave fewer and less accurate descriptions of these latter animations, but equally accurate descriptions of the other animations compared with controls. While viewing animations that elicited mentalizing, in contrast to randomly moving shapes, the normal group showed increased activation in a previously identified mentalizing network (medial prefrontal cortex, superior temporal sulcus at the temporoparietal junction and temporal poles). The autism group showed less activation than the normal group in all these regions. However, one additional region, extrastriate cortex, which was highly active when watching animations that elicited mentalizing, showed the same amount of increased activation in both groups. In the autism group this extrastriate region showed reduced functional connectivity with the superior temporal sulcus at the temporo-parietal junction, an area associated with the processing of biological motion as well as with mentalizing. This finding suggests a physiological cause for the mentalizing dysfunction in autism: a bottleneck in the interaction between higher order and lower order perceptual processes.

Cite

CITATION STYLE

APA

Castelli, F., Frith, C., Happé, F., & Frith, U. (2002). Autism, asperger syndrome and brain mechanisms for the attribution of mental states to animated shapes. Brain, 125(8), 1839–1849. https://doi.org/10.1093/brain/awf189

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free